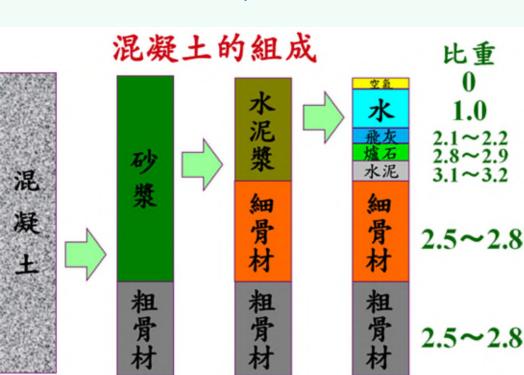


溫故知新 - 高性能混凝土



技術研究發展小組 莊志展 105年12月20日

混凝土

- ▶ 定義:凡膠結材料(水泥)結合砂(細骨材)、石(粗骨材)、摻品等拌合而成者稱之(Concrete),可概分為黏結材(水泥糊體)與填充材(骨材)
- ▶ 優/缺點:
 - 抗壓強度大/抗拉、抗剪強度低/脆性
 - 耐久性、耐火性 耐磨性、隔熱性 隔音性佳 /硬化後修改及 拆除困難

混凝土材料-水

- ▶ 水:需符合ASTM C94或CNS 1237之標準。
 - (PH 5~8; 氯CL≤1,000ppm; 硫酸鹽S04≤3,000ppm)
 - ◆ 拌合前之洗滌用水
 - ◆ 拌合用水:水與水泥混合成水泥漿,起水化作用,產 生膠質結晶體,提供膠結強度。
 - ◆ 養護用水:
 - 目的:增加強度或防止水化時所需水份之蒸發。
 - 時間:澆置後7天內保持濕潤。早強混凝土可縮短為3天。
 - 温度:15~35℃間最為適宜,現行法規規定至少需維持在10℃左右的温度。

混凝土材料-骨材

- ➤ 骨材: 須符合CNS 1240之規定(石英質最佳)
 - ◆ 細骨材:係指能全部通過10mm(3/8 in)篩孔之重量 百分比須達85%以上之骨材。
 - ◆ 粗骨材:指停留於(3/4 in)篩孔之重量百分比達85% 以上者。
 - ◆ 粗骨材的最大尺寸不得大於下列規定
 - 最小模板間之五分之一
 - 樓板厚度之三分之一
 - 最小鋼筋淨距之四分之三。
 - 骨材之細度模數(F.M.):殘留於標準篩上骨材百分 率累積值總和除以100所得之值稱之
 - CNS: 細骨材2.3 \sim 3.1, 粗骨材5.5 \sim 7.5

混凝土材料-水泥

水泥:以石灰石、粘土、矽砂、鐵渣為原料,經適當配料研磨、混合均匀成生料,於旋轉窯內以高溫燒結後成為熟料,再加適量的石膏研磨而成 美國ASTM規範定義為卜特蘭水泥

(西元元年初期,古 羅馬與希臘人在石灰 中掺加一些火山灰 (義大利Pozzoli) 可提高強度及耐水侵 蝕能力,後來就將屬 於這類性質的礦物材 料都稱為卜作嵐材料 (Pozzolan cement)

卜特蘭水泥

種類名稱	功能說明	備註
第 I 型-普通水泥	一般,無特殊需求	CNS 61 卜特蘭水泥 另有具輸氣型號: IA、ⅡA、
第Ⅱ型-改良水泥	較低水化熱及抗硫能力 橋墩、臨水結構	田a,輸氣型係為具抗凍融性需求
第Ⅲ型-早強水泥	趕工(提早拆模) 搶修、軍事工程	CNS 3654 卜特蘭高爐水泥 I S (≦5%)
第IV型-化熱水泥	巨積結構物(水壩)	CNS 11270 卜特蘭飛灰水泥 I F (≦5%)
第V型-抗硫水泥	臨海結構、下水道等	0.02空氣

> 水灰比

拌合水與水泥重量之比值,W/(C+P)表示

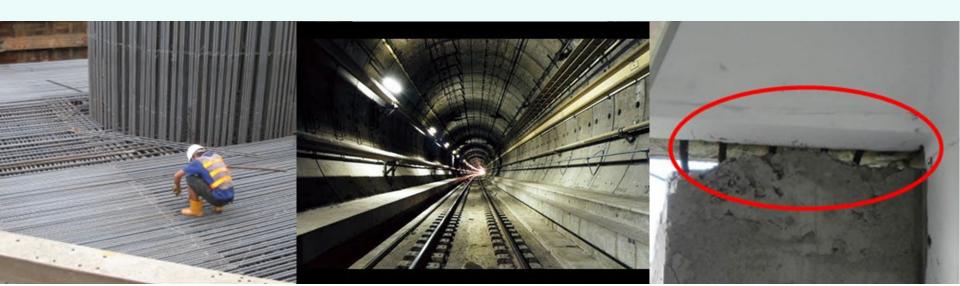
- ◆ 水灰比與混凝土強度成反比
- ◆ 水灰比與工作性成正比
- ◆ 水灰比與混凝土水密性成反比
- ◆ 水灰比與混凝土耐久性成反比

混凝土材料-掺料

> 目的

- ◆ 減少水化熱\減少體積變化及進裂
- ◆ 增加水密性、減少滲透性
- ◆ 減少或阻止**鹼骨材**反應
- ◆ 降低成本(部份代替水泥\資源再利用

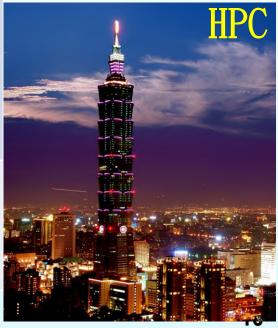
種 類	說 明
矽灰	降低混凝土之水化熱、減少水泥用量、增加水密性及提高晚期強度
飛灰	可減少用水量,提強度,早期強度較低(約-10%),晚期強度則較高
輸氣劑(A.E)	增加冰凍融解之抵抗性,進而增加耐久性。
速凝劑	縮短硬化時間,但因釋放較多之水化熱,一般兼有抗凍之效果
緩凝劑	延緩凝結時間(初凝及終凝)保持適當工作度,兼具減水劑之效果
減水劑	改善耐久性及水密性,減少混凝土之吸水性及透水性
強塑劑(SP)	增加可塑性及流動性,具高減水性可增加強度及防水性,避免骨材析離
擴散劑	在改善混凝土之工作性及減少拌合水量等。
膨脹劑	因凝結而產生之收縮,可藉由膨脹劑所產生之膨脹而相 互抵銷。使用大量之膨脹劑,可製造輕質混凝土。


高性能混凝土

- ➤ 定義 (HPC- High Performance Concrete):
 - ◆ 對傳統混凝土來說,其強度、工作度、流動性、耐久性、耐磨性、水密性、完整性及其他特殊性能(如低水化熱)經濟性等較佳-by美國混凝土學會(ACI-American Concrete Institute)
 - ◆ 符合「耐久性、安全性、工作性、經濟性、生態性」-台灣 1996
 - 水泥 \leq 450 kg/m³
 - W/(C+P)在0.2至0.45之間
 - 單軸抗壓強度達55 Mpa
 - 坍度25±2 cm, 45分鐘後坍度至少大於23.5 cm
- ▶ 特性:具有高流動性、高強度、高水密性、高耐久性、低水灰比,同時可減少<u>冰水(blecding)與骨材析離</u> (aggregatesegregation)等現象

自充填性混凝土

- ➤ 定義 (Self-Compacting Concrete) 係指具有『澆置過程不需施加任何振動搗實,完全藉由 自身流動性與充填性能填充至鋼筋間隙及模板之各角落』 能力之混凝土-by 工程會施工網要規範
- > 適用性
 - 混凝土搗實困難之結構物(省工)
 - 混凝土充填密實有效提昇結構之可靠性(水密性)
 - 當作修補材料



自充填性混凝土

類別性質	自充填混凝土(SCC)
材料均質性	 不需振動,不會發生骨材折離或浮水現象, 使混凝土均匀性大幅提升 較無結構體之瑕疵、孔洞或弱面 構件中混凝土之材料性質更接近同批次預拌 混凝土之試體強度
抗壓強度	混凝土強度經濟規模,最大可達420 kgf/cm²
施工性	 泵送性良好(具高流動及高坍度),提高工作性 凝結與硬固時間較遲緩,無法配合提前拆模 施工後混凝體表面光滑平整,無須二次粉光作業
耐久性	1. 充分發揮自充填性能,大幅改善混凝土與鋼筋間之介面性質而提高握裹力、增加耐久性2. 混凝土體積較為穩定、緻密性高,減少劣害之離子入侵混凝土影響耐久性

水工混凝土的磨損機制

侵蝕分類-by ACI 210R-93

- > 穴蝕:水中氣泡破裂對混凝土表面產生衝擊破壞
- > 化學侵蝕:受水中鹽或酸性溶液的侵蝕
- ▶ 磨蝕:水中挾砂、石等對混凝土表面磨、刮、撞等

作用	破壞機制	改善		
磨耗	挾砂等固體顆粒沿表面 移動造成坡破	增加剪力強度及 表面硬度		
撞擊	受固體顆粒反覆碰撞破 損,骨材被帶出	骨材粒徑及水泥 固結能力		
切割	破孔處邊綠因流速較大 形成切割現象	調整配比及增加 抗拉能力		
淘洗	砂漿與骨材間的微裂縫 受水流滲入造成淘洗	骨材與水泥的固 結能力		
剝離	耐磨層與底層黏結失敗, 耐磨層剝離脫落	耐磨層與底層的 黏結能力		

混凝土材質與耐磨性關係

與抗壓強度關係 與水膠比關係 與粗粒料用量關係 與礦物用量關係 水中磨耗:抗壓強度 ▶ 成反比(最佳水 ▶ 成正比(最佳用 ▶ 限定用量,可提抗磨 $350 \rightarrow 420 \rightarrow 560 \text{kgf/cm}$ 膠比為 0.45 及 量0.35 m3/m3以 損能力(爐石總取代 量50%以下; 飛灰 ^2相對磨損體積 0.4以下) 上) $200 \rightarrow 160 \rightarrow 100 \text{cm}^3$ 級配越均勻者抗 ▶ 水膠比由 0.72 ▶ 15%以下、矽灰10% 减少為0.40時 含沙水流衝擊:抗壓 磨力越佳;骨材 以下) 使用10~15% 矽灰可 強度 混凝土之耐磨 強度越高抗磨力♪ 性可提高 减少混凝土表面泌水 $350 \rightarrow 420 \rightarrow 560 \text{kgf/cm}$ 越好 ^2相對磨損體積 43%(緻密性高) ▶ 增加粗骨材(降 量,提高抗磨損能力 $30 \rightarrow 26 \rightarrow 20 \text{cm}^3$ > 降低水膠比可 低砂石比),有 提升2~3倍抗磨耗力 抗壓強度500 kgf/cm2 效增加抗磨力。▶ 飛灰、爐石可降低混 提升可提高抗 以下者,混凝土磨損 **磨力**。 凝土表面裂縫,進而 體積量隨強度增加而 減少弱面產生增加抗 明顯降低;以上則提 麼 力 升有限。

混凝土的耐磨性質

- ▶ 抗壓強度21Mpa~62Mpa,磨損量與抗壓強度成反比
- > 粗骨材強度與磨損量成反比
- W/C降低,強度增加,但用水量過低將降低工作性及減少膠結材料體積,應配合添加摻劑(減水劑、強塑劑), 唯預注意早期強度較低
- ▶ 添加卜特蘭材料(飛灰、矽灰、爐石)與水泥水化產物產生卜特蘭反應生成C-S-H膠體,可強化骨材界面鍵結強度、提昇水密性、強度,唯其卜特蘭反應所需時間較久,其早強強度較差
- > 砂石比低、級配均勻者,抗磨性提高
- ▶ 適當礦物取代量(飛灰、矽灰、爐石),可提高抗磨性

小 結

- ▶ 坡地上水保設施(混凝土),全生命週期的管理 應提早規劃
- 混凝土結構物耐久性設計,建議於水保設計中 推行
- 混凝土配比設計、施工相關規範,宜加強落實於第一線工作

WE ARE JUST ON THE WAY THANK YOU.

簡報結束 敬請斧正

卜特蘭水泥

典型的五種卜特蘭水泥化學組成成分和性質

水泥型式	I	II	III	IV	V
C ₃ S	50	45	60	25	40
C_3S C_2S C_3A C_4AF	25	30	15	50	40
C_3A	12	7	10	5	4
C ₄ AF	8	12	8	12	10
細度 (m ² /kg)	350	350	450	300	350
抗壓強度 (1天	1000	900	2000	450	900
, psi)					
水化熱 (7天,	330	250	500	210	250
J/g)					